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F irst of all I will express my deep gratitude
to the Scandinavian Society of Peri-
odontology   for  awarding  me   The  1998
Jens Waerhaug Lecture in Periodontology. I

feel very honoured and I admire the courage of the
prize committee to select a person like me who is
not a specialist in the field of periodontology. In
my research I have been studying the development
of the  dental tissues including the periodontal
ligament and alveolar bone. Research on the biol-
ogy of mineralized tissues is now progressing very
rapidly, and it will provide a better understanding
of periodontal diseases and of the mechanisms
involved in periodontal regeneration.

In recent years a number of special treatment
procedures have been introduced to promote
regeneration of lost periodontal tissues. These
include different modalities of flap procedures
often combined with implantation of bone grafts
of various types of bone substitutes [1–3], demin-
eralization of the root surface  [4–7], guided tissue
regeneration [8, 9] and combinations of  these
modalities. More recently growth factors and
attachment proteins have been tried experi-
mentally [10–13]. These studies have shown that
although it is possible to modify the healing
response in various ways, true periodontal
regeneration, i.e. restoration of original structure
and function of the periodontal tissues, has been
an elusive goal. The most common divergence
from the original morphology concerns the type
of cementum and its cohesion to the dentine
surface.  The hard tissue formed at the root surface
is often cellular, and it easily separates from the
dentineeee [10, 14–17].

Studies on cementum formation and peri-
odontal regeneration are hampered by the scarcity
of suitable experimental models. Small laboratory
animals such as mice and rats have molar teeth
with limited growth and roots like human teeth,
but the small size of these animals’ molars make
experimental studies very difficult. In addition,
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Under senare år har ett flertal
metoder introducerats för att åstad-
komma regeneration av förlorade
parodontala vävnader. Exempel på
sådana metoder är användning av
olika operationsmetoder, deminera-
lisering av rotytan, bentransplantat,
membranteknik och tillförsel av
tillväxtfaktorer. I denna korta pre-
sentation beskrivs bakgrunden till
den metod som imiterar den norma-
la utvecklingen av parodontiet och
utnyttjar en fraktion av emaljprotei-
nerna för att åstadkomma parodon-
tal regeneration. Sambandet mellan
emalj- och cementbildning illustre-
ras bl a av det faktum att ett stort
antal gräsätande djur har cement
ovanpå emaljen. Det betonas att
alla tre parodontiets vävnader hör
till tanden och att det alveolära
benets tillväxt styrs av celler nära
rotytan. Regeneration av rotytan
och dess celler med hjälp av emalj-
proteiner leder således till regenera-
tion av såväl cement som rothinna
och alveolärt ben.
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the formation of the roots of, at least, rat molars
seems to differ from that of human teeth. Other
animals commonly used in the laboratory such as
rabbits and guinea pigs have molars as well as
incisors that grow continuously, which excludes
them from studies on periodontal regeneration.
Dogs have frequently been used for studies on
periodontal regeneration, but it seems as if results
in dogs are not directly transferable to the human
situation.  In dogs, the regeneration of the bone
around the teeth seems to be less dependent on a
normal periodontium than in monkeys and
humans. So far the teeth of monkeys seem to be
the best model for experimental studies on
periodontal regeneration [18, 19]. However,  a
number of ethical, economical and other reasons
limit the possibilities for experimental testing in
monkeys. In order to progress in our under-
standing of different factors that influence the
progression of periodontitis as well as periodontal
regeneration, new experimental models have to be
developed.

A new, alternative approach to obtain peri-
odontal regeneration is to try to mimic the events
that took place during the development of the
periodontal tissues. It should then be remembered
that the development of the periodontal ligament
and the alveolar bone is associated with the
development of the teeth [20–27]. Experimental
studies indicate that the maintenance of  the
periodontal ligament and the alveolar bone is also
regulated by cells close to the root surface [28].
Thus, if the ambition is to regenerate the
periodontal ligament and the alveolar bone that
have been lost due to periodontitis, it should aim
at re-establishing a new cementum and neigh-
bouring cells. If this is accomplished, the peri-
odontal ligament and alveolar bone are regene-
rated as a result of the cells at a healthy root sur-
face.

Root formation is initiated by the downgrowth
of Hertwig´s epithelial root sheath. The epithelial
root sheath constitutes an apical extension of the
enamel organ, and ever since Slavkin and Boyde
[29] suggested that cementum is an epithelial
secretory product, numerous  studies have been
carried out to investigate this secretory activity
[30–35]. Most of these studies have shown that the
root sheath cells form and secrete enamel matrix
proteins during root formation, but there seem to
be some differences between species.

At early stages the developing enamel consists
of about equal amounts of proteins, minerals, and
water with minor fractions of carbohydrates and
lipids. Amelogenins are a family of proteins that is
by far the most abundant of these proteins re-
presenting more than 90% of the protein content

Figure 1. A fro-
zen section of
the apical end of
a developing hu-
man premolar
extracted for
orthodontic
reasons and in-
cubated for
immunohisto-
chemical de-
monstration of
the amelogenin
fraction of
enamel matrix.
The staining
(arrows) at the
peripheral
surface of the
apical end of the
root shows that
amelogenin is
present in the
area where
cementum
formation is
initiated.
Bar = 100 µm.

Figure 2. The
enamel matrix
of a maxillary
developing mo-
lar of a 5-day-
old rat exposed
to the mesen-
chymal cells of
the dental
follicle for 10
days. A thin
layer of a new
hard tissue
(arrows) has
formed on top
of the exposed
enamel matrix.
Bar = 50 µm.
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of the enamel. Studies of amelogenin from various
species have shown that is remarkably well
conserved, which means that there are very small
differences in the composition between species
[36, 37].

Amelogenin has been demonstrated in epi-
thelial cells at the apical end of infected roots of rat
molars [38]. It has also been found at the surface of
the developing apical end of the roots of human
premolars and within the peripheral root dentine
[39, 40] (Fig.1).  In the peripheral root dentine of
human teeth, the space occupied by amelogenin
deposits remain as Tomes’ granular layer in the
fully formed tooth.  At the root surface, acellular
cementum is formed in the area where the
amelogenin has been found. The deposition of
amelogenin in the peripheral dentine makes this
part of the tooth a very special tissue. In the clinical
treatment of periodontitis, no attention has been
paid to this fact. Root planing aims at obtaining a
smooth root surface with no concern for the
biological function of the tissues that are removed.
In my opinion, more  attention should be paid to
the possible role of the peripheral (mantle) dentine
for a successful periodontal regeneration.

Experimental studies on developing rat molars
have shown that cementum is formed when
mesenchymal cells of the dental follicle are ex-
posed to denuded enamel matrix [40, 41]. A few
days after the removal of the enamel epithelium
and exposure of the enamel matrix,  a thin layer of
a collagenous hard tissue can be observed (Fig. 2).
It is interesting to note that coronal cemento-
genesis in a number of herbivorous species seems
to be initiated by exposure of the mesenchymal
cells of the dental follicle to the developing
enamel. The coronal cementum formation starts
as islets in fenestrations in the enamel epithelium.
In some species it then continues to develop into a
complete coverage of the enamel, while it remains
as islets or pearls in others [42–46]. At the
developing ends of the roots of human teeth, the
epithelial root sheath also fenestrates in the area
where cementum formation starts [47]. With
increasing age the windows in the epithelium
increase in size and the epithelial network
becomes less dense [48].

The effect of enamel matrix proteins on
periodontal regeneration has been tested in a
buccal dehiscence model in monkeys. Those
experiments showed that it was possible to
regenerate acellular cementum as well as the
periodontal ligament and alveolar bone. The
model was also used for quantitative studies on
the effect of different fractions of the enamel
matrix on the periodontal regeneration. It was
found that the amelogenin fraction was efficient

Figure 3. A
buccal dehi-
scence in a
maxillary pre-
molar of a
monkey 8 weeks
after the appli-
cation of the
amelogenin
fraction of the
enamel matrix
on the exposed
dentine surface.
The black arrow
indicates the
apical end of
the mechani-
cally removed
cementum, peri-
odontal liga-
ment, and
alveolar bone.
Note the re-
generation of
cementum
(white arrow
heads), peri-
odontal liga-
ment, and
alveolar bone.
Bar = 100 µm.

Figure 4. The
cervical area of
a sheep incisor
showing the
cementum
covering the
surface of the
enamel (black
arrows) as well
as the root sur-
face (white
arrow heads).
Note that there
is no observable
difference be-
tween the
coronal and
radicular
cementum.
Note also that
the cemento-
dentinal
junction is an
apical extension
of the cervical
edge of the
enamel.
Bar = 50 µm.
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while matrix components with a higher molecular
weight did not promote periodontal regeneration
[49] (Fig. 3). A product based on the amelogenin
fraction, called EMDOGAIN® (BIORA AB, Malmö,
Sweden) is now being marketed for the pro-
motion of periodontal regeneration.

The observation that cementum formation
seems to be associated with the enamel proteins
should not come as a surprise, since a number of
herbivorous animals have cementum on top of the
enamel of the crown. In this position the coronal
cementum constitutes a part of the occlusal
surface and takes part in the grinding of the food.
Human teeth also have regions with coronal
cementum. Based on structural studies, most of
the coronal cementum of human teeth has been
defined as acellular, afibrillar cementum  [50].
However, coronal cementum of some herbiv-
orous animals has a structural appearance that is
similar to that of the radicular acellular extrinsic
fibre cementum [44, 45, 51] (Fig. 4).

Comparative studies of the developing teeth in
various species are very informative for the
understanding of the relation between the
formation of all the dental tissues including
enamel and cementum. It might be said that
nature has made all the good experiments. The
scientific challenge is to identify them and to
compare and interprete them. After almost four
billion years of evolution, nature has learned what
works. Recently, biomimicry was introduced as a
name for a new science that studies nature´s
models and then imitates them [52]. The word
biomimicry comes from the greek words bios (life)
and mimesis (imitation). It introduces a new way
of viewing and valuing nature and tries to find
what we can learn from it The use of enamel
matrix proteins to promote regeneration of the
periodontal tissues is, in my opinion, a good
example of biomimicry.

Summary
During the last decades a number of methods have
been introduced to promote the regeneration of
periodontal tissues. These include different flap
procedures, demineralization of the root surface,
bone grafts, guided tissue regeneration, and ad-
ministration of growth factors. This short presen-
tation describes the background of the method
that imitates the normal development of the peri-
odontium and which involves the application of a
fraction of the enamel proteins to the root surface
to promote periodontal regeneration. The link
between enamel and cementum formation is, e. g.,
illustrated by the fact that a great number of herbiv-
orous animals have cementum on top of the ena-

mel. It is emphasized that the three tissues of the
periodontium are dental tissues and that growth
and maintenance of the alveolar bone are regula-
ted by cells at the root surface. Regeneration of the
root surface by means of enamel proteins will thus
result in regeneration of the cementum as well as
of the periodontal ligament and alveolar bone.
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